<table>
<thead>
<tr>
<th>Polygon</th>
<th>Sides</th>
<th>Sum of Interior Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>Quadrilateral</td>
<td>4</td>
<td>360</td>
</tr>
<tr>
<td>Pentagon</td>
<td>5</td>
<td>540</td>
</tr>
<tr>
<td>Hexagon</td>
<td>6</td>
<td>720</td>
</tr>
<tr>
<td>Heptagon</td>
<td>7</td>
<td>900</td>
</tr>
<tr>
<td>Octagon</td>
<td>8</td>
<td>1080</td>
</tr>
<tr>
<td>Nonagon</td>
<td>9</td>
<td>1260</td>
</tr>
<tr>
<td>Decagon</td>
<td>10</td>
<td>1440</td>
</tr>
<tr>
<td>Dodecagon</td>
<td>12</td>
<td>1800</td>
</tr>
</tbody>
</table>
Interior and Exterior Angles are a linear pair (they add to 180/are supplementary).

\[\text{Interior Angle} + \text{Exterior Angle} = 180^\circ \]

Example

\[\begin{align*}
180^\circ - 70^\circ &= 110^\circ \\
\angle LKM &= 60^\circ \\
m\angle LKN &= 120^\circ
\end{align*} \]
Example

Is $\angle y$ an interior or exterior angle? \underline{Exterior}

Is $\angle j$ an interior or exterior angle? \underline{Interior}

$m\angle y = \frac{125}{120}$

$m\angle j = \frac{125}{120}$
YOU HAVE TO MEMORIZE THIS!

SUM of Interior Angles:

\[= (n - 2) \cdot 180^\circ \]

\(n = \text{number of sides} \)

1. What is the sum of the interior angles of an octagon?

\[(8-2) \times 180 = 1080\]

2. What is the sum of the interior angles of a 30-gon?

\[(30-2) \times 180 = 5040\]
3. What is the measure of the missing angle?

\[(6-2) \times 180 = 720\]
\[x + 99 + 141 + 105 + 156 + 80 = 720\]
\[x = 139\]

4. What is the measure of the missing angle in the polygon shown?

\[(5-2) \times 180 = 540\]
\[x + 92 + 105 + 93 + 102 = 540\]
\[x = 148\]

A. 172° B. 78° C. 108° D. 148°
5. What is the value of x?

\[(\text{angles}) + (\text{angles}) + (\text{angles}) = 360°\]

\[127° + 5x + 3° + 88° + 10x + 7° = 360°\]

\[x = 9\]

6. Solve for x. Then find the measure of $\angle F$.

\[\text{Inner angles of hexagon} + (7-2)\times180 = 900°\]

\[S(25\cdot 126) - 6 = 124°\]

\[x = 26\]

$m\angle F = 124°$
ONE Interior Angle in a REGULAR polygon:

all sides/angles are congruent

\[= \frac{(n-2) \cdot 180}{n} \]

Example:
7. What is the measure of an interior angle in a regular hexagon?
A. 135° B. 120° C. 720° D. 60°

\[120 = \frac{(6-2) \cdot 180}{6} \]
8. The polygon shown is regular.

\[
\frac{(8-2) \times 180}{8} = \frac{1080}{8} = 135^\circ
\]

What is the measure of one of its interior angles?

A. 135°
B. 1080°
C. 80°
D. 140°

9. Solve for \(x \).

\[
10x + 8x - 16 + 12x - 8 + 7x + 2 + 9x + 4 + 6x + 10 = 720
\]

\[
x = 14
\]
10. ABCDE is a regular pentagon.

\[
\frac{(5-2) \times 180}{5} = 108
\]

What is \(m\angle ABC \) ?
A. 540° B. 108° C. 120° D. 324°

11. Find \(m\angle B \).

\[
X + 130 + 130 + 90 + 90 = 540
\]

\[
X = 100
\]

A. 130° B. 108° C. 100° D. 230°
YOU HAVE TO MEMORIZE THIS!

SUM of EXTERIOR Angles:

\[= 360^\circ \]

The number of sides does NOT matter!!

Example:

1. Find the sum of the exterior angles of an icosagon.
 \[\text{20-gon} \]
 \[360 \]
2. Find the sum of the exterior angles of the polygon shown below.

\[
\text{Sum} = 360
\]

3. Find value of x.

\[
\begin{align*}
180 - 105 &= 75 \\
180 - 70 &= 110 \\
360 - 110 - 90 - 75 &= 85 \\
180 - 85 &= 95 = x
\end{align*}
\]

\[x = 95\]

4. Find value of x.

\[
\begin{align*}
65 + 115 + 92 + 101 &= 373 \\
79 + 100 + 132 + 48 &= 361 \\
(5 - 2) \times 180 &= 540 \\
180 - 79 &= 101 \\
180 - 65 &= 115 \\
540 - 92 - 115 - 101 - 132 &= 102 \\
180 - 100 &= 80 \\
x &= 80
\end{align*}
\]
5. What is the value of x?

\[180 - 55 = 125 \]
\[(8 - 2) \times 180 = 1080 \]

A. 1080° B. 105° C. 135° D. 175°

6. Find $m \angle D$.

\[(5 - 2) \times 180 = 540° \]
\[2x + 76 + 90 + 90 = 540 \]
\[x = 142° \]

A. 108° B. 142° C. 284° D. 540°